
ARYAN SCHOOL OF ENGINEERING & ECHNOLOGY

BARAKUDA, PANCHAGAON, BHUBANESWAR, KHORDHA-752050

LECTURE NOTE

SUBJECT NAME- MICROPROCESSOR & MICROCONTROLLER

BRANCH-COMPUTER SCIENCE ENGG.

SEMESTER-4TH SEM

ACADEMIC SESSION-2022-23

PREPARED BY- DIPAK KUMAR SAHOO

UNIT- 1: MICROPROCESSOR (ARCHITECHTURE AND PROGRAMMING -8085- 8-BIT)

1.1 INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER-

MICROPROCESSOR:

• A Microprocessor is a multipurpose, Programmable clock driven, register based electronic
device,

• That read binary instruction from a storage device called memory, accepts binary data as
input and processes data according to those instructions and provides results as outputs.

• Microprocessor is clock driven semiconductor device which for is manufactured by using
LSI and VLSI technique.

MICROCOMPUTER:

• A microcomputer is a small, relatively inexpensive computer with a microprocessor as
its central processing unit (CPU). It includes a microprocessor, memory, and input/output
(I/O) facilities.

• Microcomputers became popular in the 1970s and 80s with the advent of increasingly
powerful microprocessors.

• Examples of Microcomputers are Intel 8051 controller-a single board computer,

• IBM PC and Apple Macintosh computer.

1.2 DIFFERENCE BETWEEN MICROCOMPUTER AND MICROPROCESSOR-
General Architecture of Microcomputer System:

The major parts are CPU, Memory and I/O

There are three buses, address bus, data bus and control bus;

MEMORY:

• Memory consist of RAM and ROM, the purpose of memory is to store binary codes for
the sequences of instructions you want the computer to carry out.

• The second purpose of the memory is to store the binary-coded data with which the
computer is going to be working.

INPUT / OUTPUT:
• The input/output or I/O Section allows the computer to take in data from the outside

world or send data to the outside world.

• Peripherals such as keyboards, video display terminals, printers are connected to I/O
Port.

CPU (CENTRAL PROCESSING UNIT):

• In a microcomputer CPU is a microprocessor.

• The fetches binary coded instructions from memory, decodes the instructions into a

series of simple actions and carries out these actions in a sequence of steps.

• The CPU also contains an address counter or instruction pointer register, which holds

the address of the next instruction or data item to be fetched from memory.

Architecture of microprocessor-

Microprocessor is divided into three segments-

1. ALU

2. Register

3. Control Unit

Arithmetic Logic Unit:

• This is the area of Microprocessor where various computing functions are performed on
data.

• The ALU performs operations such as addition, subtraction and logic operations such as
AND, OR and exclusive OR.

Control Unit:

• The Control Unit Provides the necessary timing and control signals to all the operations
in the Microcomputer

• It controls the flow of data between the Microprocessor and Memory and Peripherals.

• The Control unit performs 2 basic tasks

 →Sequencing

 →Execution

Register:

• These are storage devices to store data temporarily.

• There are different types of registers depending upon the microprocessor.

• These registers are primarily used to store data temporarily during the execution of
a program and are accessible to the user through the instructions.

 1.3 CONCEPT OF ADDRESS, DATA & CONTROL BUS-
ADDRESS BUS:

• The address bus consists of 16, 20, 24 or 32 parallel signal lines.

• On these lines the CPU sends out the address of the memory location that is to be

written to or read from. The no of memory location that the CPU can address is

determined by the number of address lines.

• If the CPU has N address lines, then it can directly address 2N memory locations i.e. CPU
with 16 address lines can address 216 or 65536 memory locations.

DATA BUS:

• The data bus consists of 8, 16 or 32 parallel signal lines.

• The data bus lines are bi-directional.

• This means that the CPU can read data in from memory or it can send data out to
memory.

CONTROL BUS:

• The control bus consists of 4 to 10 parallel signal lines.

• The CPU sends out signals on the control bus to enable the output of addressed memory
devices or port devices.

• Typical control bus signals are Memory Read, Memory Write, I/O
 Read and I/O Write.

 1.4 GENERAL BUS STRUCTURE:

ADDRESS BUS:

• It is a group of conducting wires which carries address only.
• Address bus is unidirectional because data flow in one direction, from microprocessor

to memory or from microprocessor to Input/output devices.
• Length of Address Bus of 8085 microprocessor is 16 Bit (i.e. Four Hexadecimal Digits),

ranging from 0000 H to FFFF H, (H denotes Hexadecimal).
• The microprocessor 8085 can transfer maximum 16 bit address which means it can

address 65,536 different memory location.
• The Length of the address bus determines the amount of memory a system can address.
• Such as a system with a 32-bit address bus can address 2^32 memory locations.
• If each memory location holds one byte, the addressable memory space is 4 GB.

However, the actual amount of memory that can be accessed is usually much less than
this theoretical limit due to chipset and motherboard limitations.

DATA BUS:

• It is a group of conducting wires which carries Data only.

• Data bus is bidirectional because data flow in both directions, from microprocessor to

memory or Input/output devices and from memory or Input/output devices to

microprocessor.

• Length of Data Bus of 8085 microprocessor is 8 Bit (That is, two Hexadecimal Digits),

ranging from 00 H to FF H. (H denotes Hexadecimal).

• When it is write operation, the processor will put the data (to be written) on the data

bus, when it is read operation, the memory controller will get the data from specific

memory block and put it into the data bus.

• The width of the data bus is directly related to the largest number that the bus can

carry, such as an 8 bit bus can represent 2 to the power of 8 unique values, this equates

to the number 0 to 255.A 16 bit bus can carry 0 to 65535.

CONTROL BUS:

• It is a group of conducting wires, which is used to generate timing and control signals

to control all the associated peripherals, microprocessor uses control bus to process
data i.e. what to do with selected memory location. Some control signals are:

• Memory read
• Memory write
• I/O read
• I/O Write
• Opcode fetch

1.5 ARCHITECTURE OF 8085 MICROPROCESSOR:

Accumulator:
It is an 8-bit register used to perform arithmetic, logical, I/O & load/store operations. It is
connected to internal data bus & ALU.

Arithmetic and logic unit:
As the name suggests, it performs arithmetic and logical operations like Addition,
Subtraction, AND, OR, etc. on 8-bit data.

General purpose register:
• There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H& L. Each

register can hold 8-bit data.

• These registers can work in pair to hold 16-bit data and their pairing combination is
like B-C, D-E & H-L.

Program counter:

• It is a 16-bit register used to store the memory address location of the next instruction
to be executed.

• Microprocessor increments the program whenever an instruction is being executed, so
that the program counter points to the memory address of the next instruction that is
going to be executed.

Stack pointer:

It is also a 16-bit register works like stack, which is always incremented/decremented
by 2 during push & pop operations.

Temporary register:

It is an 8-bit register, which holds the temporary data of arithmetic and logical
operations.

Flag register:

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending
upon the result stored in the accumulator.

These are the set of 5 flip-flops:

• Sign (S)

• Zero (Z)

• Auxiliary Carry (AC)

• Parity (P)

• Carry (C)

D7 D6 D5 D4 D3 D2 D1 D0

S Z

AC

P

CY

Instruction register and decoder:

• It is an 8-bit register.

• When an instruction is fetched from memory then it is stored in the Instruction register.

• Instruction decoder decodes the information present in the Instruction register.

Timing and control unit:

It provides timing and control signal to the microprocessor to perform operations.
Following are the timing and control signals, which control external and internal circuits:-

• Control Signals: READY, RD’, WR’, ALE

• Status Signals: S0, S1, IO/M’

• DMA Signals: HOLD, HLDA

• RESET Signals: RESET IN, RESET OUT

Interrupt control:

• As the name suggests it controls the interrupts during a process.

• When a microprocessor is executing a main program and whenever an interrupt occurs,
the microprocessor shifts the control from the main program to process the incoming
request.

• After the request is completed, the control goes back to the main program.

• There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5,
and TRAP.

Serial Input/output control:

It controls the serial data communication by using these two instructions: SID (Serial input
data) and SOD (Serial output data).

Address buffer and address-data buffer:

• The content stored in the stack pointer and program counter is loaded into the address
buffer and address-data buffer to communicate with the CPU.

• The memory and I/O chips are connected to these buses; the CPU can exchange the
desired data with the memory and I/O chips.

Address bus and data bus:

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries the
location to where it should be stored and it is unidirectional. It is used to transfer the data
& Address I/O devices.

1.6 SIGNAL DESCRIPTION OF 8085:

The pins of an 8085 microprocessor can be classified into seven groups:-

Address bus:

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus:

AD7-AD0, it carries the least significant 8-bit address and data bus.

Control and status signals:

These signals are used to identify the nature of operation. There are 3 control signal and
3 status signals.

Three control signals are RD’, WR’ & IO/M’.

RD’:

This signal indicates that the selected IO or memory device is to be read and is ready for
accepting data available on the data bus.

WR’:

 This signal indicates that the data on the data bus is to be written into a selected memory
or IO location.

IO/M’:

This signal is used to differentiate between IO and Memory operations, i.e. when it is high
indicates IO operation and when it is low then it indicates memory operation.

ALE:

 It is a positive going pulse generated when a new operation is started by the
microprocessor. When the pulse goes high, it indicates address. When the pulse goes down
it indicates data.

S1 & S0:

These signals are used to identify the type of current operation.

Power supply:

There are 2 power supply signals Vcc & Vss. VCC indicates +5v power supply and VSS
indicates ground signal.

Clock signals:

There are 3 clock signals, i.e. X1, X2, CLK OUT.

X1 X2:

A crystal (RC, LC N/W) is connected at these two pins and is used to set frequency of the
internal clock generator. This frequency is internally divided by 2.

CLK OUT:

This signal is used as the system clock for devices connected with the microprocessor.

Interrupts & externally initiated signals:

• Interrupts are the signals generated by external devices to request the microprocessor to
perform a task.

• There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. We will discuss
interrupts in detail in interrupts section.

TRAP:

• It is a non-maskable interrupt, having the highest priority among all interrupts. By default,
it is enabled until it gets acknowledged. In case of failure, it executes as ISR and sends the
data to backup memory. This interrupt transfers the control to the location 0024H.

RST7.5:

• It is a maskable interrupt, having the second highest priority among all interrupts. When
this interrupt is executed, the processor saves the content of the PC register into the stack
and branches to 003CH address.

RST 6.5:

• It is a maskable interrupt, having the third highest priority among all interrupts. When this
interrupt is executed, the processor saves the content of the PC register into the stack and
branches to 0034H address.

RST 5.5:

• It is a maskable interrupt. When this interrupt is executed, the processor saves the content
of the PC register into the stack and branches to 002CH address.

INTR:

It is a maskable interrupt, having the lowest priority among all interrupts. It can be
disabled by resetting the microprocessor.

When INTR signal goes high, the following events can occur:

The microprocessor checks the status of INTR signal during the execution of each
instruction.

• When the INTR signal is high, then the microprocessor completes its current instruction
and sends active low interrupt acknowledge signal.

• When instructions are received, then the microprocessor saves the address of the next
instruction on stack and executes the received instruction.

INTA’:

It is an interrupt acknowledgment sent by the microprocessor after INTR is received.

RESET IN:

This signal is used to reset the microprocessor by setting the program counter to zero.

RESET OUT:

This signal is used to reset all the connected devices when the microprocessor is reset.

READY:

This signal indicates that the device is ready to send or receive data. If READY is low, then
the CPU has to wait for READY to go high.

HOLD:

 This signal indicates that another master is requesting the use of the address and data
buses.

HLDA (HOLD Acknowledge):

It indicates that the CPU has received the HOLD request and it will relinquish the bus in
the next clock cycle. HLDA is set to low after the HOLD signal is removed.

Serial I/O signals:

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

SOD (Serial output data line):

 The output SOD is set/reset as specified by the SIM instruction.

SID (Serial input data line):

 The data on this line is loaded into accumulator whenever a RIM instruction is executed.

• When the INTR signal is high, then the microprocessor completes its current instruction
and sends active low interrupt acknowledge signal.

• When instructions are received, then the microprocessor saves the address of the next
instruction on stack and executes the received instruction.

1.7 REGISTER ORGANIZATION:

It has six addressable 8-bit registers: A, B, C, D, E, H, L and two 16-bit registers PC and SP.
These registers can be classified as:

• General Purpose Registers

• Temporary Registers: Temporary data register, W and Z registers

• Special Purpose Registers: Accumulator, Flag registers, Instruction register

• Sixteen-bit Registers: Program Counter (PC), Stack Pointer (SP)

1. General Purpose Registers:

• Registers B, C, D, E, H, and L are general purpose registers in 8085 Microprocessor. All
these GPRS are 8-bits wide. They are less important than the accumulator.

• They are used to store data temporarily during the execution of the program. For
example, there is no instruction to add the contents of B and E registers.

• At least one of the operands has to be in A. Thus to add Band E registers, and to store
the result in B register, the following have to be done.

➢ Move to A register the contents of B register.

➢ Then add A and E registers. The result will be in A.

➢ Move this result from A register to B register.

• It is possible to use these registers as pairs to store 16-bit information. Only B-C, D-E,
and H-L can form register pairs.

• When they are used as register pairs in an instruction, the left register is understood to
have the MSB byte and the right registers the LSB byte.

• For example, in D-E register pair, the content of the D register is treated as the MSB byte,
and the content of E register is treated as the LSB byte.

2. Temporary Registers:

• Temporary Data Register: -

• The ALU has two inputs. One input is supplied by the accumulator and other from the

temporary data register.

• The programmer cannot access this temporary data register. However, it is internally

used for execution of most of the arithmetic and logical instructions.

• W and Z register:- Wand Z registers are temporary registers. These registers are used
to hold 8-bit data during the execution of some instructions. These registers are not
available for the programmer since 8085Microprocessor Architecture uses them
internally.

3. Special Purpose Registers:

Accumulator (A):

• Register A is an 8-bit register used in 8085 to perform arithmetic, logical, I/O &
load/store operations.

• Register A is quite often called as an Accumulator. An accumulator is a register for
short-term, intermediate storage of arithmetic and logic data in a computer's CPU
(Central Processing Unit).

• In an arithmetic operation involving two operands, one operand has to be in this
register. And the result of the arithmetic operation will be stored or accumulated in this
register.

• Similarly, in a logical operation involving two operands, one operand has to be in the
accumulator. Also, some other operations, like complementing and decimal
adjustment, can be performed only on the accumulator.

Flag Register:

• It is a 3-bit register, in which five of the bits carry significant information in the form of
flags: S (Sign flag), Z (Zero flag), AC (Auxiliary carry flag), P (Parity flag), and CY (carry
flag).

• S-Sign flag: - After the execution of arithmetic or logical operations, if bit D7 of the result

is 1, the sign flag is set. In a given byte if D7 is1, the number will be viewed as a negative

number. If D7 is U, the number will be considered as a positive number.

• Z-Zero flag:-The zero flag sets if the result of the operation in ALU is zero and flag resets

if the result is non-zero. The zero flags are also set if a certain register content becomes

zero following an increment or decrement operation of that register.

• AC-auxiliary Carry flag: - This flag is set if there is an overflow out of bit 3 i.e. carry

from lower nibble to higher nibble (D3 bit to D4 bit). This flag is used for BCD operations

and it is not available for the programmer.

• P-Parity flag: - Parity is defined by the number of one’s present in the accumulator.

After arithmetic or logical operation, if the result has an even number of ones, i.e. even

parity, the flag is set. If the parity is odd, the flag is reset.

• CY-Carry flag: - This flag is set if there is an overflow out of bit 7. The carry flag also

serves as a borrow flag for subtraction. In both the examples shown below, the carry

flag is set.

Instruction Register:-
• In a typical processor operation, the processor first fetches the opcode of instruction

from memory (i.e. it places an address on the address bus and memory responds by
placing the data stored at the specified address on the data bus).

• The CPU stores this opcode in a register called the instruction register. This opcode is
further sent to the instruction decoder to select one of the 256 alternatives.

4. Sixteen Bit Registers:

Program counter (PC):-

• Program is a sequence of instructions. Microprocessor fetches these instructions from
the memory and executes them.

• The program counter is a special purpose register which, at a given time, stores the
address of the next instruction to be fetched.

• Program Counter acts as a pointer to the next instruction.

• How processor increments program counter depends on the nature of the instruction;
for one-byte instruction it increments program counter by one, for two-byte instruction
it increments program counter by two and for three-byte instruction it increments

program counter by three such that program counter always points to the address of
the next instruction.

Stack Pointer (SP):-

The stack is a reserved area of the memory in the RAM where temporary information
may be stored. A 16-bit stack pointer is used to hold the address of the most recent stack
entry.

1.8 DISTINGUISH BETWEEN GPR AND SPR:

 GPR-
• It stands for General purpose registers.
• In these registers data can be accessed directly without requiring any intermediate.
• Examples of GPR are B, C, D, E, H, and L.
• These registers are of 8-bit.
• In order to hold 16 bit data, two 8 bit register can be combined or they can work in

pairs such as B-C, D-E and H-L. These pairs are known as register pairs.
• The H-L pair works as a memory pointer.
• A memory pointer holds the address of a particular memory location.

 SPR-
• SPR stands for special purpose register.
• In special purpose register data cannot accessed directly and requires an intermediate.
• Examples of SPR are Accumulator, program counter, stack pointer.
• These registers are used only by microprocessor not by users.

1.9 TIMING AND CONTROL UNIT:

• We use Timing and controlling unit in 8085 for the generation of timing signals and

the signals to control.
• All the operations and functions both interior and exterior of a microprocessor are

controlled by this unit.
• X2 and CLK output pins: To do or rather perform the operations of timing in the

microcomputer system, we have a generator called clock generator in the CU of 8085.
• Other than the quartz crystal the complete circuit of the oscillator is within the chip.

The two pins namely X1 and X2 are taken out from the chip to give the connection to
the crystal externally.

• We connect a capacitor of 20pF between the terminal X2 and ground just to analyze if
the crystal is getting started.

• The frequency of the crystal is divided by 2 which divide the counter of the unit of
control by 2.

• Internally 8085A works with a frequency of 3 MHz internally with clock frequency.
Hence a crystal of frequency of 6-MHz crystal gets connected between X1 and X2.

• Every operation in the entire 8085 system occurs with the given synchronization
process with the clock. There are Peripheral chips like 8251 USART, which does not
operate until a small clock signal is in need.

1.10 STACK, STACK POINTER AND STACK TOP:

STACK:

• The stack is a LIFO (last in, first out) data structure implemented in the RAM area and is

used to store addresses and data when the microprocessor branches to a subroutine.

• Then the return address used to get pushed on this stack. Also to swap values of two

registers and register pairs we use the stack as well.

STACK POINTER:

• It is a special purpose 16-bit register that stores the address of the “top of stack”.

• “8085” provides the “stack pointer” which gives the address of the “top of stack”. So,
whenever you want to store an item it stacks, you just store it at the address provided
by the stack pointer.

STACK operation in 8085 microprocessor.

 The stack is a reserved area of the memory in RAM where temporary information
may be stored. An 8-bit stack pointer is used to hold the address of the most recent stack
entry. This location which has the most recent entry is called as the top of the stack.
 When the information is written on the stack, the operation is called PUSH. When
the information is read from the stack, the operation is called POP. The stack works on
the principle of Last in First Out.

1.11 8085 INTERRUPTS:

• Interrupt is a process where an external device can get the attention of the
microprocessor.

• An interrupt is considered to be an emergency signal that may be serviced.

• The Microprocessor may respond to it as soon as possible.
• The process starts from the I/O device
• The process is asynchronous

Classification of Interrupts:

Interrupts can be classified into two types:
• Maskable Interrupts (Can be delayed or Rejected)
• Non-Maskable Interrupts (Cannot be delayed or Rejected)

Interrupts can also be classified into:

• Vectored (the address of the service routine is hard-wired)

• Non-vectored (the address of the service routine needs to be supplied externally
by the device)

What happens when MP is interrupted?
• When the Microprocessor receives an interrupt signal, it suspends the currently

executing program and jumps to an Interrupt Service Routine (ISR) to respond to the
incoming interrupt.

• Each interrupt will most probably have its own ISR.

• Responding to an interrupt may be immediate or delayed depending on whether
the interrupt is maskable or non-maskable and whether interrupts are being
masked or not.

• There are two ways of redirecting the execution to the ISR depending on whether
the interrupt is vectored or non-vectored.

• Vectored: The address of the subroutine is already known to the Microprocessor.

• Non Vectored: The device will have to supply the address of the subroutine to the
Microprocessor.

• When a device interrupts, it actually wants the MP to give a service which is

equivalent to asking the MP to call a subroutine. This subroutine is called ISR

(Interrupt Service Routine)

• The ‘EI’ instruction is a one byte instruction and is used to enable the non-maskable

interrupts.

• The ‘DI’ instruction is a one byte instruction and is used to disable the non-

maskable interrupts.

• The 8085 has a single Non-Maskable interrupt. The non-maskable interrupt is not

affected by the value of the Interrupt Enable flip flop.

The 8085 has 5 interrupt inputs.

• The INTR input is the only non-vectored interrupt. INTR is maskable using the EI/DI
instruction pair.

• RST 5.5, RST 6.5, RST 7.5 are all automatically vectored and are mask able.

• TRAP is the only non-maskable interrupt in the 8085.it is also automatically vectored.

Masking of interrupt SIM, RIM:

• When we study interrupts in 8085 microprocessor then we should know Masking of

Interrupts in 8085 microprocessor.

• In 8085 microprocessor masking of interrupt can be done for four hardware interrupts
INTR, RST 5.5, RST 6.5, and RST 7.5.

• The masking of 8085 interrupts is done at different levels. In bellow figure shows the
organization of hardware interrupts in the 8085 microprocessor.

http://www.electronicsengineering.nbcafe.in/wp-content/uploads/2018/01/iturrupt_masking.png

• The maskable interrupts are by default masked by the Reset signal. So no interrupt is

recognized by the hardware reset.
• The interrupts can be enabled by the EI instruction.
• The three RST interrupts can be selectively masked by loading the appropriate word in

the accumulator and executing SIM instruction. This is called software masking.
• All maskable interrupts are disabled whenever an interrupt is recognized.
• All maskable interrupts can be disabled by executing the DI instruction.
• If we talk about RST 7.5 interrupt. It alone has a flip-flop to recognize edge transition.

The DI instruction reset interrupt enable flip-flop in the processor and the interrupts
are disabled. To enable interrupts, EI instruction has to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed,

the SIM instruction reads the content of accumulator and accordingly mask or unmask the

interrupts. The format of control word to be stored in the accumulator before executing

SIM instruction is as shown in Fig.

• In addition to masking interrupts, SIM instruction can be used to send serial data on the
SOD line of the processor.

• The data to be send is placed in the MSB bit of the accumulator and the serial data output
is enabled by making D6 bit to 1.

RIM Instruction:

• RIM instruction is used to read the status of the interrupt mask bits.

• When RIM instruction is executed, the accumulator is loaded with the current status of

the interrupt masks and the pending interrupts.

• The format and the meaning of the data stored in the accumulator after execution of RIM

instruction is shown in Fig.

http://www.electronicsengineering.nbcafe.in/wp-content/uploads/2018/01/sim.png

• In addition RIM instruction is also used to read the serial data on the SID pin of the
processor.

• The data on the SID pin is stored in the MSB of the accumulator after the execution of the
RIM instruction.

• E.g. write an assembly language program to enables all the interrupts in 8085 after reset.
EI Enable interrupts MVI A, 08H: Unmask the interrupts SIM: Set the mask and unmask
using SIM instruction.

http://www.electronicsengineering.nbcafe.in/wp-content/uploads/2018/01/rim.png

UNIT-2: INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING

2.1 INSTRUCTION WORD SIZE:

• The total memory location required to feed the instruction in memory is called
as instruction word size.

• The memory location of 8085 microprocessor can accommodate 8-bits of data.
• To store 16-bits data, they are stored in two consecutive memory locations (i.e. 2 Bytes).
• According to the instruction word size in 8085 microprocessor, there are three types of

instructions:
a. 1-Byte instruction
b. 2-Byte instruction
c. 3-Byte instruction

1 – Byte Instructions:

• They include opcode and operands in the same byte.

• Operands are internal registers and coded into the instruction.

• Instructions require one memory location to store the single byte in the memory.

Note:
Instructions having the only register or register pair as the operand is 1 – Byte Instructions.
Instructions in the absence of operand are also 1 – Byte Instructions.
Examples:

MOV B, C

LDAX B

NOP

HLT

2 – Byte Instructions:

• 1st byte specifies opcode and 2nd byte specifies operand.

• Instructions require two memory locations to store in the memory.

Note:
Instructions having the 8-bit number either as an address or data as the operand is 2 – Byte
Instructions.
Examples:

MVI B, 26 H

IN 56 H

https://electricalvoice.com/category/8085-microprocessor/

3 – Byte Instructions:

• In a 3-byte instruction, the first byte specifies the opcode, and the following two bytes
specify the 16-bit address.

• The 2nd byte holds the low order address.

• The 3rd-byte holds the high order address.

• Instructions require three memory locations to store the single byte in the memory.

Note:
Instructions having the 16-bit number either as an address or data as the operand is 3 – Byte
Instructions.
Examples:

LDA 2050 H

JMP 2085 H

2.2 ADDRESSING MODES:

• The various ways of specifying data (or operands) for instructions are called

as addressing modes.

• The 8085 addressing modes are classified into following types:

1. Immediate addressing mode
2. Direct addressing mode
3. Register addressing mode
4. Register indirect addressing mode
5. Implicit addressing mode

1. Direct Addressing mode:

• In this addressing mode the address of the operand is specified in the instruction itself.

 or

• The mode of addressing in which the 16-bit address of the operand is directly available in
the instruction itself is called Direct Addressing mode. i.e., the address of the operand is
available in the instruction itself. This is a 3-byte instruction.

Example:
LDA 9525H→ Load the contents of memory location into Accumulator.

STA 8000H→Store the contents of the Accumulator in the location 8000H

IN 01H→ Read the data from port whose address is 01H

2. Register addressing modes:
• In this addressing mode the address of the operand is one of the general purpose register.

 or

• In this mode the operands are microprocessor registers only i.e. the operation is
performed within various registers of the microprocessor.

Example:
• MOV A, B→Move the contents of B register to A register.

• SUB D→ Subtract the contents of D register from Accumulator.

• ADD B, C→Add the contents of C register to the contents of B register.

3. Register indirect addressing modes:
• In this addressing mode the address of the operand is specified by a register pair.

 or

• The 16-bit address location of the operand stored in a register pair (H-L) is given in the
instruction. The address of the operand is given in an indirect way with the help of a
register pair. So it is called Register indirect addressing mode.

Example:
• LXIH 9570H→Load immediate the H-L pair with the address of the location 9570H

• MOV A, M→ Move the contents of the memory location pointed by the H-L pair
to accumulator

4. Immediate Addressing mode:
• In this addressing mode the operand is specified in the instruction itself.

 or

• In this mode operand is a part of the instruction itself is known as Immediate Addressing
mode. If the immediate data is 8-bit, the instruction will be of two bytes. If the immediate
data is 16 bit, the instruction is of 3 bytes.

Example:
ADI DATA →Add immediate the data to the contents of the accumulator.
LXIH 8500H→Load immediate the H-L pair with the operand 8500H
MVI 08H → Move the data 08 H immediately to the accumulator
SUI 05H →Subtract immediately the data 05H from the accumulator

5. Implicit Addressing mode:

• In this addressing mode the instruction don’t require the address of the operand.

 or

• The mode of instruction which do not specify the operand in the instruction but it is
implicated, is known as implicit addressing mode. i.e., the operand is supposed to be
present generally in accumulator.

Example:
CMA→complement the contents of Accumulator

CMC→ Complement carry

RLC→ Rotate Accumulator left by one bit

RRC→ Rotate Accumulator right by one bit

STC→Set carry.

2.3 INSTRUCTION SET OF 8085:

• An instruction is a binary bit pattern which performs a specific function in a system. The
entire group of instructions of a system is called the instruction set.

• Instruction set determines what functions the microprocessor can perform with a single
instruction.

• The instruction set in microprocessor 8085 can be classified into five functional
categories:

 OR

• An instruction is a command to the microprocessor to perform a given task on a specified
data.

• Each instruction has two parts: one is task to be performed, called the operation code
(opcode), and the second is the data to be operated on, called the operand.

• The operand (or data) can be specified in various ways. It may include 8-bit (or 16-bit)
data, an internal register, a memory location, or 8-bit (or 16-bit) address. In some
instructions, the operand is implicit.

1. Data transfer (copy) operations
2. Arithmetic operations
3. Logical operations
4. Branching operations and
5. Machine-control operations.

https://www.daenotes.com/electronics/digital-electronics/instruction-set-intel-8085

1. DATA TRANSFER INSTRUCTION:

• These instructions move data between registers, or between memory and registers.
• This group of instructions copies data from a location called as source to another location

called as destination, without modifying the contents of the source
• These instructions are not the data transfer instructions but data copy instruction because

the source is not modified.

Opcode Operand

Copy from source to
destination

Description

MOV Rd, Rs This instruction copies the contents of the
source

M, Rs register into the destination register; the
contents of
The source register are not altered. If one of the
operands is a memory location, its location is
specified by the contents of the HL registers.

Example: MOV B, C or MOV B, M

Rd, M Move immediate 8-bit
MVI Rd, data The 8-bit data is stored in the destination register or

M, data

Memory. If the operand is a memory location, its
location is specified by the contents of the HL
registers. Example: MVI B, 57H or MVI M, 57H

Load accumulator

LDA 16-bit address The contents of a memory location, specified by a
16-bit address in the operand, are copied to the
accumulator.

The contents of the source are not altered.
Example: LDA 2034H

Load accumulator indirect

LDAX B/D Reg. pair The contents of the designated register pair point to a
memory location. This instruction copies the contents of
that memory location into the accumulator. The
contents of either the register pair or the memory
location are not altered.
Example: LDAX B

Load register pair immediate

LXI Reg. pair, 16-bit data The instruction loads 16-bit data in the register pair
designated in the operand.
Example: LXI H, 2034H

Load H and L registers direct

LHLD 16-bit address The instruction copies the contents of the

memory location pointed out by the 16-bit
address into register L and copies the contents of
the next memory location into register H. The
contents of source memory locations are not
altered.
Example: LHLD 2040H

Store accumulator direct

STA 16-bit address

The contents of the accumulator are copied into the
memory location specified by the operand. This is a
3-byte instruction, the second byte specifies the
low-order address and the third byte specifies the
high-order address. Example: STA 4350H

Store accumulator indirect
STAX Reg. pair

The contents of the accumulator are copied into the
memory location specified by the contents of the
operand (register pair). The contents of the
accumulator are not altered.
Example: STAX B

Store H and L registers direct

SHLD 16-bit address

The contents of register L are stored into the
memory location specified by the 16-bit address in
the operand and the contents of H register are
stored into the next memory location by
incrementing the operand. The contents of registers

HL are not altered. This is a 3-byte instruction, the
second byte specifies the low-order address and the
third byte specifies the high-order address.
Example: SHLD 2470H

Exchange H and L with D and E
XCHG none

The contents of register H are exchanged with the
contents of register D, and the contents of register L
are exchanged with the contents of register E.
Example: XCHG

Arithmetic Operations:

They perform arithmetic operations, such as, addition, subtraction, increment, and
decrement.

Addition:

• Addition of any 8-bit number, or the contents of a register or the contents of a memory

location is added to the contents of the accumulator and the sum is stored in the accumulator.

• No two other 8-bit registers can be added directly.

• For example the contents of register B cannot be added directly to the contents of the register

C. 8085 can also perform 16-bit. It can also perform BCD addition.

Subtraction:

• Subtraction of any 8-bit number, or the contents of a register, or the contents of a memory

location can be subtracted from the contents of the accumulator and the results stored in the

accumulator.

• The subtraction is performed in 2’s compliment, and if the results is negative. Then they are

expressed in 2’s complement.

• No two other registers can be subtracted directly. 8085 do not perform 16-bit subtraction.

Increment or Decrement:

• The 8-bit contents of any register or a memory location can be incremented or decrement by

1.

• Similarly, the 16-bit contents of a register pair can be incremented or decrement by 1.

• These increment and decrement operations can be performed directly in the source itself. It

means without using accumulator.

Opcode Operand Meaning Explanation

ADD
R

M

Add register or
memory, to the
accumulator

The contents of the register
or memory are added to the
contents of the accumulator
and the result is stored in the
accumulator.

Example − ADD R,ADDM

ADC
R

M

Add register to the
accumulator with
carry

The contents of the register
or memory & M the Carry flag
are added to the contents of
the accumulator and the
result is stored in the
accumulator.

Example − ADC R,ADDM

ADI 8-bit data
Add the immediate to

the accumulator

The 8-bit data is added to
the contents of the
accumulator and the result is
stored in the accumulator.

Example − ADI 55

ACI 8-bit data
Add the immediate to

the accumulator with
carry

The 8-bit data and the Carry
flag are added to the contents
of the accumulator and the
result is stored in the
accumulator.

Example − ACI 55

LXI
Reg. pair,

16bit data
Load the register pair

immediate

The instruction stores 16-
bit data into the register pair
designated in the operand.

Example − LXI H, 3025H

DAD Reg. pair
Add the register pair

to H and L registers
The 16-bit data of the

specified register pair are

added to the contents of the
HL register.

Example − DAD

SUB
R

M

Subtract the register
or the memory from
the accumulator

The contents of the register
or the memory are subtracted
from the contents of the
accumulator, and the result is
stored in the accumulator.

Example − SUB R,SUB M

SBB
R

M

Subtract the source
and borrow from the
accumulator

The contents of the register
or the memory & M the Borrow
flag are subtracted from the
contents of the accumulator
and the result is placed in the
accumulator.

Example − SBB R,SBBM

SUI 8-bit data
Subtract the

immediate from the
accumulator

The 8-bit data is subtracted
from the contents of the
accumulator & the result is
stored in the accumulator.

Example − SUI 55

SBI 8-bit data

Subtract the
immediate from the
accumulator with
borrow

The 8-bit data and borrow is
subtracted from the contents of
the accumulator & the result is
stored in the accumulator

INR
R

M

Increment the
register or the memory
by 1

The contents of the
designated register or the
memory are incremented by 1
and their result is stored at the
same place.

Example − INR R, INR M

INX R
Increment register

pair by 1

The contents of the
designated register pair are
incremented by 1 and their
result is stored at the same
place.

Example − INX R

DCR
R

M

Decrement the
register or the memory
by 1

The contents of the
designated register or memory
are decremented by 1 and their
result is stored at the same
place.

Example − DCR R,DCR M

DCX R
Decrement the

register pair by 1

The contents of the
designated register pair are
decremented by 1 and their
result is stored at the same
place.

Example − DCX R

DAA None
Decimal adjust

accumulator

The contents of the
accumulator are changed from
a binary value to two 4-bit BCD
digits.

If the value of the low-order
4-bits in the accumulator is
greater than 9 or if AC flag is
set, the instruction adds 6 to
the low-order four bits.

If the value of the high-order
4-bits in the accumulator is
greater than 9 or if the Carry
flag is set, the instruction adds
6 to the high-order four bits.

Example − DAA

LOGICAL OPERATIONS:

These type instructions performs various logical operations with the contents of the
accumulator. 8085 can perform six logical operation which are:

• AND
• OR
• Exclusive-OR
• NOT
• Compare
• Rotate

A 8-bit number can be logically ANDed with the contents of the accumulator. It can also be a
content of register or of a memory location. The results are stored in the accumulator. The
content of the accumulator can be complimented.

Rotate:
Each bit of the accumulator can be shifted either left or right to the next position.

Compare:

• Any 8-bit number or the content of a register, or content of a memory location can be
compared for equality, greater than, or less than, with the contents of the accumulator.

• The result is reflected by zero and carry flags.

Opcode Operand Meaning Explanation

CMP R

M

Compare the
register or
memory with
the accumulator

The contents of the operand
(register or memory) are M
compared with the contents of the
accumulator.

CPI 8-bit data
Compare
immediate with
the accumulator

The second byte data is compared
with the contents of the
accumulator.

ANA
R

M

Logical AND
register or
memory with
the accumulator

The contents of the accumulator are
logically AND with M the contents of
the register or memory, and the
result is placed in the accumulator.

ANI 8-bit data
Logical AND
immediate with
the accumulator

The contents of the accumulator are
logically AND with the 8-bit data and

the result is placed in the
accumulator.

XRA
R

M

Exclusive OR
register or
memory with
the accumulator

The contents of the accumulator are
Exclusive OR with M the contents of
the register or memory, and the
result is placed in the accumulator.

XRI 8-bit data
Exclusive OR
immediate with
the accumulator

The contents of the accumulator are
Exclusive OR with the 8-bit data and
the result is placed in the
accumulator.

ORA
R

M

Logical OR
register or
memory with
the accumulator

The contents of the accumulator are
logically OR with M the contents of
the register or memory, and result is
placed in the accumulator.

ORI 8-bit data
Logical OR
immediate with
the accumulator

The contents of the accumulator are
logically OR with the 8-bit data and
the result is placed in the
accumulator.

RLC None
Rotate the
accumulator left

Each binary bit of the accumulator is
rotated left by one position. Bit D7 is
placed in the position of D0 as well
as in the Carry flag. CY is modified
according to bit D7.

RRC None
Rotate the
accumulator
right

Each binary bit of the accumulator is
rotated right by one position. Bit D0
is placed in the position of D7 as well
as in the Carry flag. CY is modified
according to bit D0.

RAL None
Rotate the
accumulator left
through carry

Each binary bit of the accumulator is
rotated left by one position through
the Carry flag. Bit D7 is placed in the
Carry flag, and the Carry flag is
placed in the least significant
position D0. CY is modified
according to bit D7.

RAR None
Rotate the
accumulator

Each binary bit of the accumulator is
rotated right by one position

right through
carry

through the Carry flag. Bit D0 is
placed in the Carry flag, and the
Carry flag is placed in the most
significant position D7. CY is
modified according to bit D0.

CMA None
Complement
accumulator

The contents of the accumulator are
complemented. No flags are affected.

CMC None
Complement
carry

The Carry flag is complemented. No
other flags are affected.

STC None Set Carry Set Carry

BRANCHING OPERATIONS:

This group of instruction transfers the control of microprocessor from one location to
another location. 8085 can perform four types of branching operations. These are:

• JMP-Jump within a program.

• CALL-Jump from main program to sub-routine.

• RET-Jump from sub-routine to main program.

• RST-Jump from main program to instruction sub routine.

Jump:

• Conditional jumps are the important aspect of the decision-making process in the

programming of a microprocessor.

• These instructions tests for a certain conditions and alter the program sequence when the

condition is met.

• For example zero or carry flag, In addition, the instruction set also includes an instruction

called unconditional jump.

Call, return, and restart:

• These type of instructions changes the sequence of a program either by calling a sub-routine
or returning from a sub-routine.

• The conditional call and return instructions can also test the condition flags.

1. Jump Instructions: –

The jump instruction transfers the program sequence to the memory address given in the

operand based on the specified flag. Jump instructions are 2 types: Unconditional Jump

Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions:

• Transfers the program sequence to the described memory address.

OPCODE
O DE

OPE OPERAND RAND EXPEXPLANATION

NATION

EXAMPLE
AMPLE

JMP address Jumps to the address JMP 2050

(b) Conditional Jump Instructions:

• Transfers the program sequences to the described memory address only if the condition in
satisfied.

OPCODE OPERAND EXPLANATION EXAMPLE

JC address Jumps to the address if carry flag is 1 JC 2050

JNC address Jumps to the address if carry flag is 0 JNC 2050

JZ address Jumps to the address if zero flag is 1 JZ 2050

JNZ address Jumps to the address if zero flag is 0 JNZ 2050

JPE address Jumps to the address if parity flag is 1 JPE 2050

JPO address Jumps to the address if parity flag is 0 JPO 2050

JM address Jumps to the address if sign flag is 1 JM 2050

JP address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions:–

 The call instruction transfers the program sequence to the memory address given in the
operand. Before transferring, the address of the next instruction after CALL is pushed onto
the stack. Call instructions are 2 types: Unconditional Call Instructions and Conditional Call
Instructions.

(a) Unconditional Call Instructions:

• It transfers the program sequence to the memory address given in the operand.

(b) Conditional Call Instructions:
 Only if the condition is satisfied, the instructions executes.

OPCODE OPERAND EXPLANATION EXAMPLE

CC address Call if carry flag is 1 CC 2050

CNC address Call if carry flag is 0 CNC 2050

CZ address Calls if zero flag is 1 CZ 2050

CNZ address Calls if zero flag is 0 CNZ 2050

CPE address Calls if parity flag is 1 CPE 2050

CPO address Calls if parity flag is 0 CPO 2050

CM address Calls if sign flag is 1 CM 2050

CP address Calls if sign flag is 0 CP 2050

3. Return Instructions: –
 The return instruction transfers the program sequence from the subroutine to the calling
program. Jump instructions are 2 types: Unconditional Jump Instructions and Conditional
Jump Instructions.

OPCODE OPERAND EXPLANATION EXAMPLE

CALL address Unconditionally calls CALL 2050

(a) Unconditional Return Instruction:

• The program sequence is transferred unconditionally from the subroutine to the calling
program.
OPCODE OPERAND EXPLANATION EXAMPLE

RET none Return from the subroutine

unconditionally

RET

(b) Conditional Return Instruction:
The program sequence is transferred unconditionally from the subroutine to the calling
program only is the condition is satisfied.

OPCODE OPERAND EXPLANATION EXAMPLE

RC none Return from the subroutine if carry flag is 1 RC

RNC none Return from the subroutine if carry flag is 0 RNC

RZ none Return from the subroutine if zero flag is 1 RZ

RNZ none Return from the subroutine if zero flag is 0 RNZ

RPE none Return from the subroutine if parity flag is 1 RPE

RPO none Return from the subroutine if parity flag is 0 RPO

RM none Returns from the subroutine if sign flag is 1 RM

RP none Returns from the subroutine if sign flag is 0 RP

STACK, I/O &MACHINE-CONTROL OPERATIONS:

These type of instructions controls the machine functions, such as halt, interrupt, or do
nothing.

Opcode Operand Meaning Explanation

NOP None
No operation No operation is performed, i.e., the

instruction is fetched and decoded.

HLT None

Halt and enter
wait state

The CPU finishes executing the current
instruction and stops further
execution. An interrupt or reset is
necessary to exit from the halt state.

DI None
Disable interrupts The interrupt enable flip-flop is reset

and all the interrupts are disabled
except TRAP.

EI None
Enable interrupts The interrupt enable flip-flop is set and

all the interrupts are enabled.

RIM None
Read interrupt
mask

This instruction is used to read the
status of interrupts 7.5, 6.5, 5.5 and
read serial data input bit.

SIM None
Set interrupt
mask

This instruction is used to implement
the interrupts 7.5, 6.5, 5.5, and serial
data output.

Stack instructions are as follows:

PUSH - Push Two bytes of Data onto the Stack

POP - Pop Two Bytes of Data off the Stack

XTHL - Exchange Top of Stack with H & L

SPHL - Move content of H & L to Stack Pointer

I/O instructions are as follows:

IN - Initiate Input Operation

OUT - Initiate Output Operation

2.4 ASSEMBLY LANGUAGE PROGRAMMING OF 8085:

What is Assembly Language Program?

• Machine language and Hex code instructions are very difficult for the programmer.

• Hence for programmer, the instructions of microprocessor are made in the form of English

abbreviation (short form). These instructions are name as Assembly Language instructions

or mnemonics.

• The combinations of different mnemonics are known as Assembly Language Program and it

is a low level language.

Examples of assembly language program
Loading Register or Memory with Data

Example 1: Write a program to transfer 07 H in register L.

Memory
Address

Machine
Code

Mnemonics Operands Comments

2000 H 2E, 07 MVI L, 07 Move immediate 07 in
register L

2002 H 76 HLT

Stop or terminate the
program

• The instruction MVI L, 07 will move the data 07 to the register L.
• The instruction will stop the program.
• The machine code for the instruction MVI L, 07 is 2E, 07.
• The 1st byte of the machine code is 2E which is the Hex code for the instruction MVI L.
• The second byte is the data 07. The machine code for HLT is 76.
• The machine codes are fetch in the memory locations, starting from the memory locations

2000 H.
• Memory location 2000 H contains 2E, 2001 H contains 07 and memory location 2002 H

contain 76, After the execution of a program, the contents of Register L can be examined
which are 07.

Memory
Address

Machine
Code

Mnemonics Operands Comments

2000 H 3E, 08 MVI A,08 Get 08 in register A
2002 H 4F MOV C,A Move the contents of register

A to register C
2003 H 76 HLT

Halt

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=2ahUKEwimv-fA9-DgAhVEu48KHadqD1sQFjADegQICRAB&url=http%3A%2F%2Fscanftree.com%2Fmicroprocessor%2FPrograms-For-8085-Microprocessor-Learners&usg=AOvVaw0iE-RVQP1NnpYzwGYkxDiS

 Example 2 Write a program to load register A with 08 H and then move it to register

C.

• In this program the instruction MVI A, ON H will place the given data 08 1H in the
register A.

• The Hex code for MVI A, 08 H is 3E, 08 IH where 3E is the Hex code for MVI A.

• The instruction MOV C, A will move the contents of register A to the register C. Its
machine code is 4F.

• With this instruction the data of register A is copies into the register C. It means
the given data, is 08 H which was previously placed in register A is now copied
into the register C.

• The instruction HLT whose machine code is 76 stops the program.

• The memory locations required for this program are 2000 H to 2003 H. Any other
memory locations can be selected. After the execution of a program, the contents
of register C can be examined.

Example 3. Write a program to load the contents of memory location 2050 H into

accumulator and then move this data into register B

Memory
Address

Machine
Code

Mnemonics Operands Comments

2000 H 3A, 50, 20 LDA 2050 H Load the contents of memory
location 2050 H into the
accumulator

2002 H 47 MOV B,A Move the contents of register A to
register B

2004 H 76 HLT

Stop

• The instruction LDA 2050 H will load the contents of memory location 2050 H into the

accumulator.
• The machine code for the instruction LDA is 3A.
• The instruction MOV B. A (Machine code 47) will move the contents of Accumulator to the

register B.
• First of all data 07 is fetch in the memory location 2050.
• Then memory locations 2000 H contain 3A, 2001 H contain 50 H, 2002 H contains 20 H, 2003

H contains 47 H and 2004 H contains 76 H.

• After execution of a program, the contents of register B can be examined.

Example 4. Write a program to add two 8-bit numbers.

MEMORY
ADDRESS

MACHINE
CODE

MNEMONICS OPERANDS COMMENTS

2000 21,01,25 LXI H,2501H Get address of first number
in H-L pair.

2003 7E MOV A,M 1st number in accumulator.
2004 23 INX H Increment content of H-L

pair.
2005 86 ADD M Add 1st and 2nd numbers.
2006 32,03,25 STA 2503H Store sum in 2503H.
2009 76 HLT Stop the program.

EXPLANATION:

➢ The 1stnumber was stored in the memory location 2501H.

➢ 2501 was placed in H-L pair by the execution of the instruction LXI H, 2501H.

➢ The instruction MOV A,M moved the content of the memory location addressed by H-L pair to

the accumulator.

➢ Thus the 1stnumber 49H which was in the 2501H was placed in the accumulator.

➢ The INX H increased the content of H-L pair from 2501 to 2502H.

➢ The instruction ADD M added the content of the memory location addressed by H-L pair with

the accumulator.

➢ The result got stored in the accumulator.

The instruction STA 2503H stored the sum in the memory location 2503H.

➢ The instruction HLT ended the program.

Example 5. Write a program to subtract two 8-bit numbers.

MEMORY
ADDRESS

MACHINE
CODES

MNEMONICS OPERAND COMMENTS

2000 21,01,25 LXI H,2501 Get address of 1st in H-L pair.
2003 7E MOV A,M 1st number in accumulator.
2004 23 INX H Content of H-L pair increases

from 2501 to 2502 H
2005 96 SUB M 1stnumber- 2ndnumber.
2006 23 INX H Content of H-L pair becomes

2503 H.
2007 77 MOV M,A Store result in 2503 H.

2008 76 HLT Stop the program

EXPLANATION:

➢ The first no. was stored in the memory location 2501 H.

➢ 2501 H was placed in H-L pair by the execution of the instruction LXI H, 2501 H.

➢ The instruction MOV A, M moved the content of the memory location addressed by H-L pair

to the accumulator.

➢ Thus the first no. 49H which was in the 2501 H was placed in the accumulator.

➢ The INX H increased the content of H-L pair from 2501 to 2502 H.

➢ The instruction SUB M subtracted the content of the memory location addressed by H-L pair

from the accumulator.

➢ The second no. which was in the memory location 2502 H was subtracted from the first no.

which was in the accumulator.

➢ The result got stored in the accumulator.

➢ The INX H increased the content of H-L pair from 2502 to 2503 H.

➢ The instruction MOV M, A moved the content of the accumulator to the memory location

addressed by H-L pair to the accumulator.

➢ The result which was stored in the accumulator got stored in the memory location 2503 H.

➢ The instruction HLT ended the program.

Example 6.Write an assembly language program in 8085 microprocessor to
perform AND operation between lower and higher order nibble of 8 bit number.

Assumption – 8 bit number is stored at memory location 2050. Final result is stored at
memory location 3050.

EXPLAINATION:

MEMORY
ADDRESS

MNEMONICS COMMENT

2000 LDA 2050 A M[2050]

2003 ANI 0F A A (AND) 0F

2005 MOV B, A B A

2006 LDA 2050 A M[2050]

2009 ANI F0 A A (AND) F0

200B RLC Rotate accumulator left by one bit without
carry

200C RLC Rotate accumulator left by one bit without
carry

200D RLC Rotate accumulator left by one bit without
carry

200E RLC Rotate accumulator left by one bit without
carry

200F ANA B A A (AND) B

2010 STA 3050 M[3050] A

2013 HLT END

EXPLANATION:

Registers A, B are used for general purpose.
1. LDA 2050: load the content of memory location 2050 in accumulator A.
2. ANI 0F: perform AND operation in A and 0F. Store the result in A.
3. MOV B, A: moves the content of A in register B.
4. LDA 2050: load the content of memory location 2050 in accumulator A.
5. ANI F0: perform AND operation in A and F0. Store the result in A.
6. RLC: rotate the content of A left by one bit without carry. Use this instruction 4 times to

reverse the content of A.
7. ANA B: perform AND operation in A and B. Store the result in A.
8. STA 3050: store the content of A in memory location 3050.
9. HLT: stops executing the program and halts any further execution.

Example 7- Write a program to find 1’s and 2’s complement of 8-bit number where
starting address is 2000 and the number is stored at 3000 memory address and store
result into 3001 and 3002 memory address.

Program –
MEMORY ADDRESS MNEMONICS OPERANDS COMMENT
2000 LDA [3000] [A] [3000]
2003 CMA

[A] [A^]

2004 STA [3001] 1’s complement
2007 ADI 01 [A] [A] + 01
2009 STA [3002] 2’s complement
200C HLT

Stop

EXPLANATION:

1. A is an 8-bit accumulator which is used to load and store the data directly
2. LDA is used to load accumulator direct using 16-bit address (3 Byte instruction)
3. CMA is used to complement content of accumulator (1 Byte instruction)
4. STA is used to store accumulator direct using 16-bit address (3 Byte instruction)
5. ADI is used to add data into accumulator immediately (2 Byte instruction)
6. HLT is used to halt the program

Example8:– Write an assembly language program in 8085 microprocessor to show
masking of lower and higher nibble of 8 bit number.
Example –

Assumption: - 8 bit number is stored at memory location 2050. After masking of nibbles,
lower order nibble is stored at memory location 3050 and higher order nibble is stored at
memory location 3051.

Program –

MEMORY
ADDRESS

MNEMONICS COMMENT

2000 LDA 2050 A M[2050]
2003 MOV B, A B A
2004 ANI 0F A A (AND) 0F

2006 STA 3050 M[3050] A
2009 MOV A, B A B
200A ANI 0F A A (AND) 0F
200C RLC rotate content of A left by 1

bit without carry
200D RLC rotate content of A left by 1

bit without carry
200E RLC rotate content of A left by 1

bit without carry
200F RLC rotate content of A left by 1

bit without carry
2010 STA 3051 M[3051] A
2013 HLT END

EXPLANATION:

 Registers A, B are used:

1. LDA 2050: load the content of memory location 2050 in accumulator A.
2. MOV B, A: moves the content of A to B.
3. ANI 0F: perform AND operation of A with 0F and store the result back to A.
4. STA 3050: store content of A in memory location 3050.
5. MOV A, B: moves the content of B in A.
6. ANI 0F: perform AND operation of A with 0F and store the result back to A.
7. RLC: rotate content of A left by 1 bit without carry. Use this instruction 4 times to

reverse the content of A.
8. STA 3051: store the content of A in memory location 3051.
9. HLT: stops executing the program and halts any further execution.

COUNTER:

• A counter is designed simply by loading appropriate number into one of the registers
and using INR or DNR instructions.

• Loop is established to update the count.

• Each count is checked to determine whether it has reached final number; if not, the
loop is repeated. C

TIME DELAY:

• Procedure used to design a specific delay.
• A register is loaded with a number, depending on the time delay required and then the

register is decremented until it reaches zero by setting up a loop with conditional jump
instruction.

Using 8-bit register as counter:

• Counter is another approach to generate a time delay. In this case the program size is
smaller. So in this approach we can generate more time delay in less space. The
following program will demonstrate the time delay using 8-bit counter.

Program Time (T-States)

• MVI B,FFH
• LOOP: DCR B
• JNZ LOOP
• RET

7
4
7/10
10

• Here the first instruction will be executed once, it will take 7 T-states. DCR C instruction takes
4 T-states. This will be executed 255 (FF) times. The JNZ instruction takes 10 T-states when
it jumps (It jumps 254 times), otherwise it will take 7 T-States. And the RET instruction takes
10 T-States.

• 7 + ((4*255) + (10*254)) + 7 + 10 = 3584. So the time delay will be 3584 * 1/3µs = 1194.66µs.
So when we need some small delay, then we can use this technique with some other values
in the place of FF.

• This technique can also be done using some nested loops to get larger delays. The following
code is showing how we can get some delay with one loop into some other

Using 16-bit register-pair as counter:

• Instead of using 8-bit counter, we can do that kind of task using 16-bit register pair. Using this
method more time delay can be generated. This method can be used to get more than 0.5
seconds delay. Let us see and example.

Program Time (T-States)

LXI B,FFFFH
LOOP: DCX B
 MOV A,B
 ORA C
 JNZ LOOP
 RET

10
6
4
4
10 (For Jump),
7(Skip)
10

• In the above table we have placed the T-States. From that table, if we calculate the time delay,
it will be like this:

• 10 + (6 + 4 + 4 + 10) * 65535H – 3 + 10 = 17 + 24 * 65535H = 1572857. So the time delay will
be 1572857 * 1/3µs = 0.52428s. Here we are getting nearly 0.5s delay.

• In different program, we need 1s delay. For that case, this program can be executed twice. We
can call the Delay subroutine twice or use another outer loop for two-time execution.

Looping, counting and indexing (Call/JMP)

To perform a repetitive task, commonly used techniques are looping, counting, and indexing.

To add data bytes stored in memory, for example, the following steps are necessary.

LOOPING

• The programming technique used to instruct the microprocessor to repeat tasks is called
looping.

• This task is accomplished by using jump instructions.

• Define the task to be repeated is called Looping.

• A loop is set up by using either a conditional Jump or an unconditional Jump as illustrated in
Examples.

COUNTING:

• Specify how many times the task is to be repeated is called Counting.
• The counter is set by loading a count (number of times the task is to be repeated) .into a

register or a register pair, and the counting is done by decrementing the count every time the
loop is repeated. The counter can also be set up to count from 0 to the final count using
increment instructions.

INDEXING:

• Specify the location of the data is called Indexing.
• The starting location of the data can be specified by loading the memory address into a

register pair and using the register pair as a memory pointer or index.

SETTING FLAGS:

• Indicate the end of the repetitive task is called Setting Flags.
• The end of repetition is indicated by the flag of the conditional Jump instruction. When the

condition is true, the loop is repeated; when the condition is false, the loop execution is
terminated, and the execution goes to the next instruction in memory.

CLASSIFICATION OF LOOPS:

1 Conditional loop

2.Unconditional loop

CONTINUOUS LOOP:

https://nextdayexam.blogspot.com/p/loopingcounting-and-indexing_9.html

• Repeats a task continuously.

• A continuous loop is set up by using the unconditional jump instruction

• A program with a continuous loop does not stop repeating the tasks until the system is
reset.

CONDITIONAL LOOP:

• A conditional loop is set up by a conditional jump instructions.

• These instructions check flags (Z, CY, P, S) and repeat the tasks if the conditions are
satisfied.

• These loops include counting and indexing.

CONDITIONAL LOOP AND COUNTER:

• A counter is a typical application of the conditional loop.

• A microprocessor needs a counter, flag to accomplish the looping task.

• Counter is set up by loading an appropriate count in a register.

• Counting is performed by either increment or decrement the counter.

• Loop is set up by a conditional jump instruction.

• End of counting is indicated by a flag.

Example:

• Steps to add ten bytes of data stored in memory locations starting ata given location and
display the sum.

• The microprocessor needs

1. A counter to count 10 data bytes.
2. An index or a memory pointer to locate where data bytes are stored.
3. To transfer data from a memory location to the microprocessor(ALU)
4. To perform addition
5. Registers for temporary storage of partial answers
6. A flag to indicate the completion of the stack
7. To store or output the result.

Stack and Subroutines programs:

• The stack is a reserved area of the memory in RAM where we can store temporary
information.

• Interestingly, the stack is a shared resource as it can be shared by the microprocessor and
the programmer.

• The programmer can use the stack to store data. And the microprocessor uses the stack
to execute subroutines.

https://www.technobyte.org/microprocessors-course-engineering-learn-from-scratch/

• The 8085 has a 16-bit register known as the ‘Stack Pointer.’

• This register’s function is to hold the memory address of the stack. This control is given to
the programmer.

• The programmer can decide the starting address of the stack by loading the address into
the stack pointer register at the beginning of a program.

• The stack works on the principle of First in Last Out. The memory location of the most
recent data entry on the stack is known as the Stack Top.

How does a stack work in assembly language?

• We use two main instructions to control the movement of data into a stack and from a stack.
These two instructions are PUSH and POP.

• PUSH – This is the instruction we use to write information on the stack.

• POP – This is the instruction we use to read information from the stack.

• There are two methods to add data to the stack: Direct method and indirect method

Direct method:

In the direct method, the stack pointers address is loaded into the stack pointer register
directly.

LXI SP, 8000H

LXI H, 1234H

PUSH H

POP D

HLT

Explanation of the code:

• LXI SP, 8000H – The address of the stack pointer is set to 8000H by loading the number into
the stack pointer register.

• LXI H, 1234H – Next, we add a number to the HL pair. The most significant two bits will enter
the H register. The least significant two bits will enter the L register.

• PUSH H – The PUSH command will push the contents of the H register first to the stack. Then
the contents of the L register will be sent to the stack. So the new stack top will hold 34H.

• POP D – The POP command will remove the contents of the stack and store them to the DE
register pair. The top of the stack clears first and enters the E register. The new top of the

stack is 12H now. This one clears last and enters the D register. The contents of the DE
register pair is now 1234H.

• HLT – HLT indicates that the program execution needs to stop.

Indirect method:

In the indirect method, the stack pointers address is loaded into the stack pointer register via
another register pair.

LXI H, 8000H

SPHL

LXI H, 1234H

PUSH H

POP D

HLT

Explanation of the code

• LXI H, 8000H – The number that we wish to enter into the stack pointer, 8000H, is loaded
into the HL pair register.

• SPHL – This is a special command that we can use to transfer data from HL pair to stack
pointer (SP). Now, the contents of the HL pair are in the SP.

• LXI H, 1234H – Next, we add a number to the HL pair. The most significant two bits will enter
the H register. The least significant two bits will enter the L register.

• PUSH H – The PUSH command will push the contents of the H register first to the stack. Then
the contents of the L register will be sent to the stack. So the new stack top will hold 34H.

• POP D – The POP command will remove the contents of the stack and store them to the DE
register pair. The top of the stack clears first and enters the E register. The new top of the
stack is 12H now. This one clears last and enters the D register. The contents of the DE
register pair is now 1234H.

• HLT – HLT indicates that the program execution needs to stop.

• Both the methods can be shown diagrammatically with the following diagram.

What is a Subroutine is assembly language?

• A subroutine is a small program written separately from the main program to perform a
particular task that you may repeatedly require in the main program.

• Essentially, the concept of a subroutine is that it is used to avoid the repetition of smaller
programs.

• Subroutines are written separately and are stored in a memory location that is different
from the main program.

• Call a subroutine multiple times from the main program using a simple CALL instruction.

BCD to binary conversion in 8085:

(2200H) = 67H
(2300H) = 6 x OAH + 7 = 3CH + 7 = 43H

Source Program:

 LDA 2200H : Get the BCD number
 MOV B, A : Save it
 ANI OFH : Mask most significant four bits
 MOV C, A : Save unpacked BCDI in C register
 MOV A, B : Get BCD again
 ANI FOH : Mask least significant four bits
 RRC : Convert most significant four bits into unpacked BCD2
 RRC
 RRC
 RRC
 MOV B, A : Save unpacked BCD2 in B register

https://www.technobyte.org/wp-content/uploads/2019/09/working-of-a-stack-direct-and-indirect-method-example.jpg

 XRA A : Clear accumulator (sum = 0)
 MVI D, 0AH : Set D as a multiplier of 10
Sum: ADD D : Add 10 until (B) = 0
 DCR B : Decrement BCD2 by one
 JNZ SUM : Is multiplication complete? i if not, go back and add again
 ADD C : Add BCD1
 STA 2300H : Store the result
 HLT : Terminate program execution

BCD to HEX conversion in 8085 Microprocessor:

Program

 LXI H,5000

 MOV A,M ;Initialize memory pointer

 ADD A ;MSD X 2

 MOV B,A ;Store MSD X 2

 ADD A ;MSD X 4

 ADD A ;MSD X 8

 ADD B ;MSD X 10

 INX H ;Point to LSD

 ADD M ;Add to form HEX

 INX H

 MOV M,A ;Store the result

 HLT

Result

Input:

Data 0: 02H in memory location 5000

Data 1: 09H in memory location 5001

Output:

Data 0: 1DH in memory location 5002

 Program to find larger of two numbers

 PROGRAM:

MEMORY
ADDRESS

MACHINE
CODE

LABELS MNEMONICS OPERANDS COMMENTS

2000 21,01,25 LXI H,2501H Address of 1st number
in H-L pair.

2003 7E MOV A,M 1stnumber in
accumulator.

2004 23 INX H Address of 2nd number
in H-L pair.

2005 BE CMP M Compared 2nd number
with 1st number. Is the
2nd number> 1st?

2006 D2,0A,20 JNC AHEAD No, larger number is in
accumulator. Go to
AHEAD

2009 7E MOV A,M Yes, get 2nd number in
accumulator.

200A 32,03,25 AHEAD STA 2503H store larger number in
2503H

200D 76 HLT Stop the program.

Example-1:

Data:

2501→98 H

2502→87 H

Result:

2503→98 H and it is stored in the memory location 2503 H.

Program to find smaller of two numbers

 PROGRAM:-

ADDRESS MACHINE
CODES

LABELS MNEMONICS OPERANDS COMMENTS

2000 21,01,25 LXI H,2501H Address of the
1st number in H-
L pair

2003 7E MOV A,M 1st number in
accumulator

2004 23 INX H Address of the
2nd number in H-
L pair.

2005 BE CMP M Compare 2nd
number with 1st
.Is 1st number <
2nd number?

2006 DA,0A,20 JNC AHEAD Yes, smaller
number is in
accumulator. Go
to AHEAD.

2009 7E MOV A,M No ,get 2nd
number in
accumulator

200A 32,03,25 AHEAD STA 2503H Store smaller
number in
2503H.

200D 76 HLT stop

EXAMPLE:

DATA:

2501-84H

2502-99H

RESULT:

2503-84H

Program to find the largest number in a data array

PROGRAM:

MEMORY
ADDRESS

MACHINE
CODES

LABELS MNEMONICS OPERANDS COMMENTS

2000 21,00,25 LXI H, 2500H Address for count in
H-L pair.

2003 4E MOV C,M Count in register C.
2004 23 INX H Address of the 1st

number in H-L pair.
2005 7E MOV A,M 1st number in

accumulator.
2006 OD DCR C Decrement count.
2007 23 INX H Address of next

number.
2008 BE CMP M Compare next

number with
previous maximum.
Is next number>
previous maximum.

2009 D2,0D,20 JNC AHEAD NO, Larger number
is in accumulator.
GO to the label
AHEAD.

200C 7E MOV A,M Yes, get larger
number in
accumulator.

200D 0D DCR C Decrement Count.
200E C2, 07, 20 JNZ LOOP
2011 32,04,25 STA 2504H Store result in

2504H.
2014 76 HLT Stop the Program.

Example-1:

Data:

2500→03

2501→98

2502→75

2503→99

Result: 2504→99

Program to find the smallest number in a data array

 PROGRAM:

 2.5 MEMORY AND I/O ADDRESSING-

 Memory Addressing-

• A memory address is a unique identifier used by a device or CPU for data tracking.

• This binary address is defined by an ordered and finite sequence allowing the CPU to track
the location of each memory byte.

MEMORY
ADDRESS

MACHINE
CODES

LABLES MNEMONICS OPERANDS COMMENTS

2000 21,00,25 LXI H,2500 H Get the address for
count in the H-L pair

2003 4E MOV C,M Count in register C.

2004 23 INX H Get address of 1st
number in H-L pair.

2005 7E MOV A,M 1stnumber in
accumulator.

2006 0D DCR C Decrement count.

2007 23 LOOP INX H Address of next
number in H-L pair.

2008 BE CMP M Compare next
number with
previous smallest. Is
previous smallest <
next no?

2009 DA,0D,20 JC AHEAD Yes, smaller number
in the accumulator
.Go to AHEAD.

200C 7E MOV A,M No, get next number
in accumulator.

200D 0D AHEAD DCR C Decrement count.

200E C2,07,20 JNZ LOOP

2011 32,50,24 STA 2450 H Store smallest
number in 2450 H.

2014 76 HLT Stop the program.

• Modern computers are addressed by bytes which are assigned to memory addresses –
binary numbers assigned to a random access memory (RAM) cell that holds up to one byte.
Data greater than one byte is consecutively segmented into multiple bytes with a series of
corresponding addresses.

• Hardware devices and CPUs track stored data by accessing memory addresses via data
buses.

• Before CPU processing, data and programs must be stored in unique memory address
locations.

 OR

Memory Addressing:

• The bus determines a fixed number of CPU memory addresses assigned according to CPU
requirements. The CPU then processes physical memory in individual segments.

• The operating system's read-only memory (ROM) basic input/output system (BIOS)
programs and device drivers require memory addresses. Before processing, input
device/keyboard data, stored software or secondary storage must be copied to RAM with
assigned memory addresses.

• Memory addresses are usually allocated during the boot process. This initiates the startup
BIOS on the ROM BIOS chip, which becomes the assigned address. To enable immediate
video capability, the first memory addresses are assigned to video ROM and RAM, followed
by the following assigned memory addresses:

• Expansion card ROM and RAM chips
• Motherboard dual inline memory modules, single inline memory modules or Rambus inline

memory modules
• Other devices

I/O addressing:

• Input/output (I/O) port addresses are used to communicate between devices and software.

• The I/O port address is used to send and receive data for a component.

• As with IRQs, each component will have a unique I/O port assigned.

• There are 65,535 I/O ports in a computer, and they are referenced by a hexadecimal address

in the range of 0000h to FFFF H.

